CHROM. 18 691

Note

Liquid chromatographic separation of four stereoisomers of cyclothiazide

GEORGE E. DAVIS and MARTIN J. WILLIAMSON*

Adria Laboratories, P.O. Box 16529, Columbus, OH 43216 (U.S.A.)

(Received March 26th, 1986)

It has previously been reported that cyclothiazide, a diuretic drug, can be separated by thin-layer chromatography into two or three spots¹. The separation of three components by high-performance liquid chromatography has also been reported^{2,3}. However, none of these methods completely resolved the components. UV analysis of the peaks using a laser diode array detector showed the same maxima and

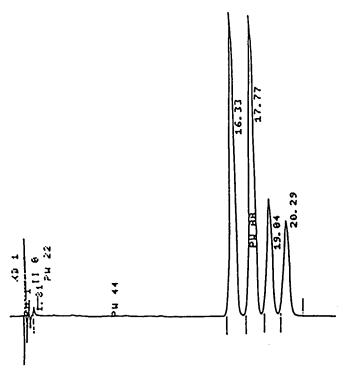


Fig. 1. Chromatogram of cyclothiazide. A 25-µl injection of a 0.5 mg/ml solution on a Waters 150 × 4.6 mm Nova-Pak column eluted at 1.0 ml/min with acetonitrile-tetrahydrofuran-water-acetic acid (18:10:71.7:0.3) and with UV detection at 271 nm.

NOTES 409

zene-1,3-disulfonamide with 5-norbornene-2-carboxaldehyde⁴. This latter compound may exist as two geometric isomers. A sample obtained from Aldrich was found to contain two components, 3:1 by area, using gas chromatography on a 6 ft. \times 1/4 in. glass column packed with 10% Carbowax 20M on 80–100 mesh Supelcoport and operated at 140°C (see Fig. 2). A sample obtained by acid hydrolysis of cyclothiazide USP gave similar results.

Therefore if the synthesis produces the endo and exo products in a 1:1 ratio, the theoretical distribution of the four isomers of cyclothiazide would be expected to be 37.5:37.5:12.5:12.5, in reasonable agreement with that found experimentally.

ACKNOWLEDGEMENTS

We are grateful to J. Bettes, L. Bursik and S. Gerhart for their technical assistance, and to Dr. S. Gharbo for helpful discussions.

REFERENCES

- 1 M. Duchene and C. L. Lapiere, J. Pharm. Belg., 20 (1965) 275-284.
- 2 P. A. Tisdall, T. P. Moyer and J. P. Anhalt, Clin. Chem., 26 (1980) 702-706.
- 3 F. De Croo, W. Van den Bossche and P. De Moerloose, J. Chromatogr., 325 (1985) 395-411.
- 4 C. D. Wentling, Anal. Profiles Drug Subst., 1 (1972) 65-77.